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Student difficulties with the study of algebra have been well documented. The inability of 

many students to understand variables and formal symbolic manipulation act as a barrier to 

success in mathematics study. This report documents an intervention that uses a concrete 

approach to teaching algebra in a Year 9 class. Results indicate that much of the student 

struggle was associated with a lack of understanding of arithmetic concepts including those 

associated with equivalence, operations with negative integers, and the distributive law and 

fraction concepts. Once these difficulties were addressed through the explicit teaching of the 

links between materials and symbols, materials and language, language and symbols, students 

made considerable progress in writing, simplifying expressions, and solving equations with 

variables on both sides.     

Introduction and Background 
 

This paper reports on a teacher’s (Jane) attempts to teach critical algebra understandings, 

in particular, how to solve equations with variables on both sides. Jane is the mathematics 

subject head of department in a suburban high school situated in a middle to lower class outer 

Brisbane suburb. Historically very few students in the school opted to study intermediate or 

advanced mathematics and Jane hoped to increase the proportion of students enrolling these 

courses (Mathematics B and Mathematics C). To this end Jane devised an algebra 

intervention for Year 9, in which she hoped that student success in middle school algebra 

would encourage a higher proportion of the students to enrol in the more advanced senior 

mathematics subjects. This paper describes the intervention (in brief) and reports on the 

barriers to, and successes in, student learning of algebra when a verbal and concrete approach 

to teaching was undertaken. Stacey and Chick (2004) noted “The algebra teacher has a crucial 

role to play both in bringing algebraic representations to the fore and in making their 

manipulation by students a venue for epistemic growth” (p. 31).   

Many students come to the study of early algebra with poor understandings of arithmetic 

(Thompson & Fleming, 2003). The use of calculators can account for some of the difficulties 

associated with number computation (MacGregor, 2004), however, it is likely that failure to 

understand the structures of arithmetic (e.g., commutative law, distributive law, fractions, 

integers and operations) will place an added cognitive load on students when it comes to the 

study of algebra. Kieran and Yerushalmy (2004, p. 21) described algebra as “Generalization 

of numerical and geometric pattens and the laws governing numerical relationships” and 

Sfard (1994) discussed algebra as “generalised arithmetic” consisting of the “operational” and 

“structural” phases. Sfard’s (1994) definition of “operational algebra” can be summed up as 

being tied to arithmetic operations, for example, the use of backtracking to solve simple linear 

equations can be seen as the reversal of arithmetic operations. “Structural algebra” can be 

seen in solving an equation with variables on both sides, however, simple reversal of 

operations such as in backtracking does not suffice. The solution requires the suspension of 

operational thinking to view the overall structure of the equation, that is, “structural” 

thinking. Stacey and MacGregor (1999) regarded students’ ability to solve equations with 

variables on both sides as an indicator of “formal algebra” or what Sfard (1994) regarded as 

“structural algebra”. The ability of students to solve such equations can be seen as a marker 

between arithmetic and algebraic thinking.  
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Stacey and Chick (2004) noted an important part of algebra learning is transformational 

processes. Clearly, without the transformational tools of arithmetic, students are likely to be 

burdened with added cognitive load and struggle to move from operational to the structural 

phase of algebra thinking. Another way of putting this is to say that without a foundation of 

numeracy the “generalization” of it would seem to be a more difficult task, some would say 

an impossible task, unless the structures of arithmetic were made explicit and taught 

simultaneously with algebra, at least as far as can be done. In addition, Lins and Kaput (2004) 

support this position emphasising the parallels between fundamental processes of arithmetic 

and algebra.  

Jane’s concerns about the proportion of students undertaking more advanced mathematics 

are shared by the broader mathematics community (e.g., Barrington, 2006). It has previously 

been reported that traditional school algebra is not appropriate for students with weak literacy 

and numeracy skills and that these students may prefer to acquire knowledge through 

increased verbal interaction and concrete activity, and that failure in early algebra is likely to 

lead to passive withdrawal from further study or active rebellion (MacGregor, 2004). In this 

way algebra study acts as a filter to the study of more advanced mathematics (e.g., 

MacGregor, 2004; Stacey & Chick, 2004). Similarly, Jane’s focus on equivalence, 

expressions, variables and solving with variables on both sides of the equal sign have been 

described as critical to algebra (e.g., Bazzini, Boero, & Garuti, 2001; Herscovics & 

Linchevski, 1994; MacGregor & Stacey, 1997; Stacey & Chick, 2004; Stacey & MacGregor, 

1999). It is generally recognised that traditional approaches to teaching algebra have failed. 

Booker (1987) summed up the difficulties with problems associated with the introduction of 

symbolic values as being a result of changes in language and nuances with respect to 

operations when students attempt to move from operating arithmetically to algebraically. 

Kaput (1987) puts the issues more bluntly, pointing out the perceived meaninglessness of 

school mathematics in general, and algebra in particular, as being at the heart of the problem. 

Kaput (1995, p. 4) reported that most students see algebra as “little more than many different 

types of rules about how to write and rewrite strings of letters and numerals, rules that must 

be remembered for the next quiz or test.” In short, algebra makes little sense to many 

children. Solutions to the problem of algebra failure are many and frequently interconnected, 

and include the following:  

• Making explicit algebraic thinking inherent in arithmetic in children’s earlier 

learning (e.g., Lins & Kaput, 2004; Warren & Cooper, 2006). 

• Explicit teaching of nuances and processes of algebra in an algebraic and symbolic 

setting (e.g., Kirshner & Awtry, 2004; Sleeman, 1986; Stacey & MacGregor, 

1997, 1999; Stacey & Chick, 2004), especially in transformational activities (e.g., 

Kieran & Yerushalmy, 2004; Stacey & Chick, 2004). 

• Using multiple representations including the use of technology (e.g., Kieran & 

Yerushalmy, 2004; Van de Walle, 2006). 

• Recognising the importance of embedding algebra into contextual themes 

(National Council of Teachers of Mathematics, 1998; Stacey & Chick, 2004).  

Clearly, much more can be said about the scope of algebra research, however, this is a 

brief paper. A review of the literature reveals that as more and more is written the 

terminology becomes increasing specialised, but the problems have persisted over 20 years of 

algebra teaching reform. One explanation is that top down reform recommendations have 

been difficult to implement in the classroom. In this study, the reforms reported have been 

generated from a teacher’s perceptions of student needs and implemented as a reform of 

pedagogy in her classroom.  

Mathematics: Essential Research, Essential Practice — Volume 2

552



  

Method 
The overall design is a case study that uses design based research, in so much as cycles of 

design, enactment, analysis and re-enactment, analysis, and further design take place. As in 

all design-experiments, the specific research questions investigated in each iteration are 

conjured out of analysis of recent failures of previous iterations (Bereiter, 2002). This study 

reports on Jane’s third iteration of the intervention in 2006, but each iteration was essentially 

identical in terms of teaching approach. This iteration was the beginning of the researcher’s 

engagement with the school algebra project. Future iterations will reflect what has been learnt 

from the analysis reported in this paper. The involvement of the researcher as an active 

participant in this process gave the research design a participatory collaborative action 

research element (Kemmis & McTaggard, 2000).  

Participants  
The participants in this study were the classroom teacher, Jane, and the 18 students 

engaged in a 6 week algebra course. The school was a State School located in a middle to low 

socio-economic status suburb. In recent years between 4% and 7% of the senior school had 

enrolled in Mathematics C (Advanced Mathematics). Although approximately 25% enrolled 

in Mathematics B (Intermediate Mathematics), half of these students failed and or withdrew 

in Year 11, leaving approximately 12% entering Year 12. In comparison, the national average 

enrolment in 2004 for Advanced Mathematics was 11.7% and for Intermediate Mathematics 

it was 22.7% (Barrington, 2006). The students in the study were drawn from the 180 students 

in the Year 9 cohort. All 180 students were tested for general numeracy and more specifically 

to determine those who were “comfortable with the use of symbols to describe patterns” 

(Jane, personal communication, 2007). Students who scored in the top 1/3 on the pre-test 

were offered the algebra extension. There were three cohorts of about 20 students each. The 

intervention occurred in 18 one-hour lessons over 6 weeks.  

Data collection and Analysis  
All 18 lessons were observed and video recorded over the 6 weeks, including recording of 

class discussions, examples of student working on tasks in small groups, and examples of the 

teacher and researcher scaffolding student learning. Student work samples including 

workbooks, tests, and scripts were collected. Students were asked to explain their reasons for 

making mathematical decisions throughout the duration of the study. Student work was 

analysed for error patterns.  In the case of their test scripts errors in computation and 

transformation could be seen in their recording of their mathematical processes. This also 

occurred in examining their class work. Additionally, in class students asked why they made 

mathematical decisions.  Finally, the nature of student difficulties could be deduced from the 

questions they asked Jane and the discussions they had with their peers during group work.  

 

Results and Discussion 

Description of Instructional Discourse.  
Instructional discourse refers to the rules for selecting and organising instructional content 

(Bernstein, 2000). Jane articulated her intentions as follows, “They needed to experience 

mathematics study in an academic and rigorous way.” The instructional discourse was based 

on an underpinning theoretical framework put forward by Booker, Bond, Sparrow, and Swan 

(2004, p. 20).  
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While the role of materials and patterns they develop is fundamental, materials by themselves do not 

literally carry meaning…it is language that communicated ideas, not only in describing concepts but 

also helping them take shape in each learner’s mind.  

Jane’s selection of activity sources was based on helping students make connections 

between materials, verbal language initially, and then symbolic language. The primary 

sources of activity were A Concrete Approach to Algebra (Quinlan, Low, Sawyer, White, & 

Llewellyn, 1987) and Access to Algebra Book 2 (Lowe, Johnston, Kissane, & Willis, 1993). 

These resources used unmarked cups with hidden counters (blobs), envelopes with hidden 

counters to help develop the concept of variables, and extensive use of other concrete 

materials including patterns made from counters or match sticks.  Both resources emphasised 

the use of language and logic to connect patterns modelled with material to verbal 

descriptions of the patterns, tabular summaries of the patterns and symbolic representations. 

Jane used match stick patterning to introduce variables and activities with cups, counters 

(blobs) and envelopes to explore writing expressions, equivalent expressions, simplifying 

expressions, expanding expressions and writing equivalent equations.  Equations were created 

and solved using the balance model, initially with the concrete materials and, then, linking to 

traditional recording using symbols. Activities from Lowe et al. (1993), were selected that 

emphasised the links between materials and symbols. In this way students saw the meaning of 

the equals sign in the context of an algebraic equation. They also learnt the careful recording 

of transformations on both sides of the equation. The third source of student activities was 

based on the symbolic recognition and manipulations of algebra terms covered above 

embedded in algebra games that Jane had devised. The algebra games were constructed 

according to principles outlined by Booker (2000), some were track or strategy grid board 

games in which diagrammatic representations of concrete materials needed to be matched 

with symbolic expressions. Other games included concept games in which randomness of 

question was introduced by throwing dice of various configurations. For example, a concept 

game required players to write an algebraic equation from a scenario given in words and then 

solve the equation: A number is multiplied by � (a ten sided die is rolled to provide this 

number), then � is added to it (a second 10 sided die is rolled to provide this number), the 

answer is � (a 36 sided die is rolled to provide this number), what is the number? Such an 

equation is linear with a variable on one side of the equals sign. It can be solved using the 

balance model and frequently results in a fraction solution. The games could be played by two 

or three students, and enabled them to consolidate and attain competency in the mathematics 

learnt in prior activities.  

Description of Regulatory Discourse  
Regulative discourse refers to the models of the teacher, learner and, pedagogic relations 

that underpin the selection and organisation of content within learning activities (Bernstein, 

2000). Typically, the 1-hour lessons were divided into three segments. In an introductory 

segment, Jane used the white board and an activity selected from Quinlan et al. (1987) or 

Lowe et al. (2001) as the basis to conduct a class discussion on the key concepts. During the 

segment she kept a careful record of the discourse on the white board. In this discourse, Jane 

emphasised the links between materials, natural language which she extended to the nuances 

of algebraic language, and symbols. Typically, in the second segment, students worked in 

pairs or threes on activities selected from Quinlan et al. (1987) or Lowe et al. (1993) and Jane 

helped individuals or pairs of students when they requested assistance. Sometimes this 

activity continued to the end of the class. Generally, the third segment was used by students to 

play the algebra games designed to give students an opportunity to apply and consolidate the 

algebra learning that had occurred earlier.  
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Results of Discourse  
The results of this discourse are presented in two sections. First, the types of errors that 

limited student completion of the algebra tasks are presented. Second, the success or 

otherwise of students on a written test and an analysis of their errors is presented.  

Video analysis of teacher/student discussion indicated that the following difficulties 

and/or errors were most common in limiting student understanding and completion of the 

algebra based activities. 

1. Difficulties associated with operations with negative integers (e.g., 4 – - 3; - 4 + - 2; 

 -3 – -7). Students did not know how to complete these computations. In addition 

students experienced difficulties with subtraction signs when expanding, for 

example 2(4 – 5), students ignoring the – sign and treating it as an addition 

obtaining an answer of 18; and 3(2x – 4) expanded to 6x + 12.  

2. Difficulties associated with solving equations of the form 3x + 3 = 15. In particular, 

students not treating the equal sign as an indication that equivalence must be 

maintained. For example, students removed the 3 from the left hand side but not the 

right hand side, thus solving for x as equal to 5. Similar mistakes were made on 

equations such as x – 2 = 2x + 3 where students would add 2 to the LHS but not to 

the RHS. When students were first challenged with problems of this structure, some 

attempted to use “backtracking” and simply reported it could not be done.  

3. Difficulties associated with number facts, such as students not knowing their 

multiplication facts and making computational errors. 

4. Difficulties associated with fractions, such as errors in solving equations of the form 

3y + 18 = 6y + 6; students responding with y + 18 = 2y + 6 indicating that students 

had generalised inappropriately about cancelling. In this instance the error has its 

roots in arithmetic where students are taught to simplify fraction computations by 

cancelling. For example, in operating upon the fraction below (e.g., (2 + 3) divided 

by 2), students simply cancelled the 2s and answered 3.  

This over generalisation in regard to fraction cancelling results from an inadequate 

understanding of fractions, and the application of this limited understanding to the algebra 

solving problem above fails the student irrespective of the student’s understanding of 

symbolism. One of the goals of the teaching program was to address these difficulties within 

the teaching of the algebraic skills. Jane and the researcher’s approach when confronted with 

such problems in the context of algebra was to re-teach the concepts in arithmetic contexts 

(e.g., students adding 
1
/2 to 

3
/3  equal 

4
/5); Jane would revise the concept of equivalence of 

fractions using paper fraction strips to display a visual model of equality or in equality, in this 

case one half is not equal to one third, before linking this to multiplication by unity (e.g, 
1
/2 

×
3
/3 = 

3
/6 to enable the formation of fractions with the same name or denominator). The 

approach of teaching arithmetic and algebra concurrently with the aid of concrete materials 

has found favour in those who recommend the teaching of algebra early in students study (e.g, 

Lins & Kaput, 2004; Warren & Cooper, 2006).  

Summary of Written Test Results 

A written post test consisting of 25 separate questions was completed by 15 students. One 

of the students missed many of the algebra lessons and her results were consistently incorrect. 

A sample of the questions and the number of students who answered them correctly are listed 

in Table 1. All students were able to recognise the pattern, complete the table of ordered pairs 

and represent it symbolically as equivalent to p + 2 = n. One student did not complete the 

equation. Seven of the students were able to correctly graph the function. Little class time was 

spent on graphing of variables. A number of authors have noted that multiple representations 
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of functions including the generation of tables and graphs assist student understanding of 

algebraic relationships (e.g., French, 2002; Kieran & Yerushalmy, 2004). French (2002, p. 

81) commented that “students need to understand the links between the equation, the table of 

values or set of co-ordinates and the graph, and to be able to move fluently between these 

representation.” In this regard the use of technologies such as excel spread sheets and 

graphing calculators has been recommended (e.g, Kieran & Yerushalmy, 2004; Kissane, 

1999). Clearly, this was an instructional discourse issue to be addressed in future algebra 

teaching in this school.     

Table 1 

Summary of Test Results for 15 Students 

Concept Typical question  Correct 

responses  

Completing a 

pattern, table, and 

describing the 

pattern 

algebraically.  

 

•••• ••••  •••• ••••  ••••    

••••  •••• ••••  •••• ••••  ••••  •••• ____ ____ ____ 

1 2 3 4 5 6 

                   

 

P 1 2 3 4 5 6 20  

N        102 

     

14 /15 

1 partial  

Writing 

expressions and 

equations 

(f)    

 
 

 

14/15 

 

 

 

 

 

13 /15 

1 partial  

Simplify 

expressions  

7x – 2x +5y – 3y 14/15 

Expand and 

simplify  

3(3x – 2y) 

b(x + 2y) 

14/15 

 8/15 

Solving equations 

with model 

3y + 2 = y + 6 10/15, 2 partial 

answer.  

Solving equations 

without a model 

5x + 2 = 7x – 9 5/15 correct, 2 

partial correct. 

 

Almost all students were able to write the symbolic expression given a pictorial 

representation. For example, all but two students could transform an equation represented 

with cups and counters into an algebraic equation (see question g; 2y + 6 = 3y + 3). These 

findings suggest that student understanding of the variable concept was progressing, in that 

students used symbols to represent variables in an unknown context. These findings are in 
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contrast with those of MacGregor and Stacey (1997) who reported that the majority of 

students in a broad Australian study up to age 15 seemed unable to interpret algebraic letters 

as generalised numbers or even specific unknowns. MacGregor and Stacey found students 

ignored letters, replaced them with numerical numbers or regarded them as short hand names. 

For example, some students viewed letters in algebra as abbreviated words, whereas others 

the letter with its place in the alphabet (as occurs in some puzzles and code translations). In 

addition, MacGregor and Stacey noted that students writing of letters in contexts such as h10 

meant add “10 to h” and 1y meant take one from y, indicative of the Roman subtraction 

principle. Clearly, some of these errors arise out of the inappropriate transfer of 

generalisations. Of additional concern to MacGregor and Stacey was the prevalence of 

students being unable to distinguish the name of the object (e.g., the person Con) from the 

name of the attribute (e.g., Con’s height). Such errors are a serious obstacle to writing 

expressions and equations. Such errors were not evident in the final written tests or during 

class in the latter stages of the intervention in this study. The findings that almost all the 

students could interpret and simplify the cups and counters equation representations correctly 

is encouraging and in contrast to the results reported by MacGregor and Stacey (1997). 

Essentially, this meant that the students recognised that x and y were symbolic representations 

of a variable (generally) and could complete simple arithmetic computations involving the 

symbols.     

Almost all students expanded 3(3x – 2y) correctly, but less than half of these students 

were able to expand b(x + 2y) appropriately. This suggests that the students might not have an 

understanding of multiplication separate from repeated addition. Subsequent to reviewing 

these results Jane reported that she had believed that the way she taught expansion by using 

concrete materials encouraged the students to use repeated addition at first. She had hoped for 

them to then establish a pattern which would mature to the full understanding of the 

distributive law. Jane said she was attempting to assist the students to develop a full 

understanding rather than a superficial procedural knowledge likely to be generated by the 

usual approach to expansion such as drawing arrows from the 3 to the 3x and -2y.  The test 

scripts supported her preferred approach for treating 3(3x – 2y). However, those students who 

could not expand b(x + 2y) expanded 3(3x – 2y) using the repeated addition algorithm as 

follows (Figure 1): 

 

( ) =− yx 223  6x – 6y 

+

yx

yx

yx

22

22

22

−

−

−

 

   yx 66 −  

 

Figure 1. Teaching expansion 

When the variable in front is included, as in b(x + 2y), the repeated addition model is no 

longer an available strategy. However, students with a good understanding of the distributive 

law, for example, being able to view 14 x 3 as (10 + 4) multiplied by 3, which can be taught 

with a focus on place value (i.e., 4 ones multiplied by 3 ones is 12 ones, renamed as 2 ones 

and 1 ten; 1 ten multiplied by 3 ones is 3 tens, added the renamed ten gives a total of 4 tens 

and 2 ones or 42 ones), ought to have been able to make the transition. Most did not. When 

this early number teaching is linked to the array model and the application of the distributive 

law, the number multiplication 3(10 + 4) has exactly the same structure b(10 + 4) and the 

similarity in structure can be extended to b(x + 2y). This example illustrates the opportunity 
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to capitalise on an understanding of arithmetic structures in the learning of algebra. In this 

study the use of the array model in linking the application of the distributive law in number 

and algebra was not made explicit, hence it might reasonably be argued that the student 

results reflected this omission.  

Almost all students solved an algebraic equation with unknowns on both sides using 

materials (Table 1 – Solving equation with model), and one third of the students solved a 

similar structured equation without the use of materials (Table 1 – Solving equation without 

model). It could be said that those students who completed the solving task without materials 

had developed an abstract schema of variables while those who solved the equation with 

materials but not without, were at an intermediate stage. Ability to equation solve such as that 

above has been described as achieving beyond a didactic cut or cognitive gap (Herscovics & 

Linchevski, 1994) and is a critical indicator of algebraic thinking. Similarly, Stacey and 

MacGregor (1999) regard this type of problem solving as an indicator of formal algebra 

capacity. This is the case since the equation cannot be easily solved arithmetically, algebraic 

competence is required (Stacey & MacGregor, 1999). Stacey and MacGregor reported that 

only about 8% of Year 10 students made this cut, those failing tending not to use logical 

reasoning in relation to inverse operations, instead using guess and check methods or 

attempting to use numerical methods; that is, they could be described as not reasoning 

algebraically.     

Encouragingly, there was no evidence at the end of the study that students retained 

misconceptions about symbolism including confounding with place value, letters standing for 

abbreviations or for specific numbers, misuse of conventions (e.g., work from left to right), 

and false analogies with ordinary language such as that described by Stacey and MacGregor 

(1997) and Sleeman (1986).     

 Conclusions and Recommendations 

The activities in this intervention were not applied or linked to authentic contexts or real 

world situations. This was almost pure algebra with a heavy focus upon the development of 

symbolic meaning and symbolic manipulation through the use of concrete materials. The 

results cause us to qualify the recommendations of the NCTM (1998) that the teaching of 

algebra be tied to contextual themes. The relative success of students in writing expressions 

and solving equations reported in this study prompt us to reconsider what “contextual” really 

means. The use of concrete materials and student discussion such as that recommended by 

Quinlan et al. (1987) and Lowe et al. (1993), and also reflected in algebra games, was 

sufficient to engage and help students make sense of algebra processes.     

 The results support the notion that the essence of learning algebra like that of arithmetic 

is to make connections between materials, patterns and symbolic meaning through the 

medium of language (e.g., Booker et al., 2001). In this instance, the use of materials was 

guided by resources that have been available to Australian teachers since the late 1980s (e.g., 

Quinlan et al., 1987) and early 1990s (e.g., Lowe et al., 1993). These resources place 

emphasis on students making meaning through the use of materials, discussion and students’ 

articulation of their mathematical thinking, through natural language initially, then 

subsequently through the specialised language of algebra conventions. The results support the 

explicit teaching of the nuances and processes of algebra in an algebraic and symbolic setting 

(e.g., Kirschner & Awtry, 2004; Sleeman, 1986; Stacey & MacGregor, 1999). The findings 

should encourage teachers and researchers to look again at multiple representational 

techniques and the use of concrete material resources as an alternative to the way algebra is 

traditionally taught in middle school.     
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An examination of student needs in needing the links between representations to be made 

explicit throughout the trial and, to a less extent the error patterns exhibited in the final test, 

indicate that much of the “trouble” for students was not associated with algebra but rather had 

its roots in incomplete understanding of arithmetic structures.  The error patterns associated 

with doing operations with integers (operating with negative integers), lack of understanding 

of the equal sign, over generalisation of cancelling procedures (fraction errors), and an 

incomplete understanding of the distributive law, have their roots in arithmetic 

misconceptions, and incomplete understandings and inability to transfer arithmetic 

understandings to algebraic contexts.  

In this small and “streamed” class most of the misconceptions usually could be addressed 

through the intervention of the teacher and researcher. Subsequent to this analysis, the use of 

more explicit linking of arithmetic and algebraic structures will be investigated in future 

iterations of the research study (e.g., the application of the distributive law in two digit 

multiplications and expansion of algebra expressions). In a larger and heterogeneous class it 

is easy to envision that a limited understanding of the structures of arithmetic and inability to 

see their relevance to algebra could spell the end of algebra competency and confidence 

among students. We concur with the assertions of previous authors (e.g., Lins & Kaput, 2004; 

Warren & Cooper, 2006) that critical concepts underpinning algebra (e.g., equal concepts, 

integer study, fractions, the distributive law and general arithmetic computational 

competency) need to be emphasised in the primary years. For example, younger students can 

be taught with the aid of materials in order to help them solve simple equations (Warren & 

Cooper, 2006). This process helps students understand the structures of arithmetic in that the 

unknown is seen as a quasi variable to be solved by backtracking, or arithmetic operations 

based about the balance model, and reverse operations that emphasise the meaning of equals. 

With the careful use of materials the balance model thinking can be extended to 

understanding how to solve equations with variables on both sides.  

 With an understanding of arithmetic, upon the beginning of formal algebra study, when 

arithmetic processes including “do the same to both sides”, “use a graph”, “guess and check”, 

and “backtracking”, do not work (Stacey & MacGregor, 1999), students would be equipped 

with an operational and structural understanding of arithmetic such that they can transfer the 

understanding to the “operational” then “structural” phases of algebra, and to “value” the 

study of algebra. The importance of valuing algebra is that usually arithmetic means do not 

work efficiently with “real algebra” problems, whereas algebra enables an efficient solution to 

be found (Stacey & MacGregor, 1999).     
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